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Abstract

With the explosive growth of internet activity, there will be an increasing reliance on intelli-
gent software agents for electronic commerce and information retrieval. Such multi-agents
systems will be comprised of self-motivated agents that interact with each other though
negotiation and task delegation. Multi-agent technology models and facilitates these inter-
actions through automated contracting. We develop a domain independent computational
model to study in a uniform manner many complex issues that arise in multi-agent con-
tracting, such as modeling commitment flexibility in a contract, valuing a contract under
assumptions of uncertainty, risk reduction, making decisions in situations of asymmetric in-
formation, or situations of sequential subcontracting where each agent must decide to sub-
contract part of its current contract to others. Our model is based on financial option pricing
theory. We believe that modeling contracts as options provides a natural unified framework
for taking into account contracting flexibility and complex forms of environmental uncer-
tainty. In addition, option pricing provides a computationally tractable formalism for calcu-
lating optimal values of various contracting decision parameters, that to date have not been
rigorously modeled. Such parameters include the value of a flexible/contingent contract,
when to give out a contract to a contractee, when to break a contract, and which contract to
accept out of a set of offered contracts. Under our model these aspects of contracting can be
explored analytically and experimentally. Moreover, there are some aspects of contracting
that have no analogues in financial options. These include contract quality guarantees and
multiple sequential sub-contracting. We extend option pricing theory in interesting ways to
model such contracts.




1 Introduction

The area of automated negotiation and contracting has been of particular interest due to the
important role it can play in facilitating understanding and the achievement of mutually-
acceptable deals among entities with differing interests, whether they be individuals, com-
panies, governments, or automated agents. Recent growing interest in autonomous software
agents [32, 41, 43] and their potential application in areas such as supply contracting[1], fil-
tering news [22], intelligent information-retrieval [29, 6], investment portfolio management
[43, 44, 46], performing secretarial functions [25, 27, 45], electronic commerce [17, 39],
electricity transport management, and telecommunication [16], has given increased impor-
tance to automated negotiation and contracting. Our long term objective is to develop a
computational model of contracting and build automated agents that enter into contracting
agreements that demonstrate a variety of complicated characteristics, such as flexibility of
contractual commitments, dealing with incomplete information, complex forms of uncer-
tainty and risk.

Software agents contract for services to other agents (or human users). Each agent may
handle requests from several other agents and may be in a position to choose which requests
it will honor in order to use its local resources most effectively. Correspondingly, an agent
chooses to give a contract to the agent who offers the most attractive deal. Thus, in the most
general case there is an electronic marketplace consisting of self-interested agents that have
their own goals and resources, and follow their own strategies (e.g. [21], [37]) to maximize
their payoffs. As agent populations grow and increased volume of business is transacted
in cyberspace, it seems inevitable [28] that there will be increasing use of agents that au-
tomatically seek out offers of goods and services, negotiate prices, and make purchases.
The design and analysis of interaction protocols for such agents is part of the growing field
of automated negotiation systems[30, 35]. A major component of automated negotiation
is contracting: an agent, the contractor, gives a job to another agent, the contractee, with
certain provisions. Traditionally, in the DAI/multi-agent systems literature, the contracts
considered are binding. A contract is binding for an agent if the agent cannot get out of its
contractual obligations. When an agent can get out of a contractual obligation, the contract
is called non-binding or contingent. Contingent contracts allow agents increased flexibility.
It has been shown [38] that in many situations non-binding contracts are superior to binding
ones. Introducing contingent contracts has two main advantages: (1) The space of possible
contracts is enhanced, so the expected utility can be higher, and (2) Contingent contracts
can reduce the variability of an agent’s payoff, since an agent can postpone a decision for
the future when more information could be available.

In this paper we present a model that will be useful for studying contingent contracts
involving multiple contractors and contractees in an uncertain environment. Consider the
problem of maximizing the expected utility when contingent contracts in addition to bind-
ing ones are allowed. One immediate question is: What should be the price of these con-
tingent contracts? When an agent is seeking other agents to perform tasks, or supply goods




and services, there may be several candidates available, offering potential contracts with
various conditions and at various prices. Similarly, each contractee agent may bid for sev-
eral different contracts. In order to select the most profitable contract, (or bid profitably for
contracts), contractors and contractees need to evaluate how much each contract is worth.
In game theory, the value of the contract is assumed known and used as input to the game-
theoretic solution concepts such as Nash equilibrium and its extensions (e.g., sequential
equilibrium, perfect Bayesian equilibrium [12]). However, this approach do not address
issues such as contract valuation, contract flexibility, or the nonstationary nature of the
underlying uncertainty. More sophisticated computational mechanisms are needed.

Besides the issue of estimating the price of a contingent contract, other important ques-
tions are raised, such as when is it optimal for an agent to decommit? It must be noted that
decommitment is just one kind of flexibility. One can envisage contracts where other fea-
tures of a contract (e.g., quality of contract results) are allowed to depend on future events.
We address these questions in our models.

Our models are based on financial option pricing theory. We believe that modeling
contingent contracts under time-dependent uncertainty and risk as options provides a natu-
ral unified framework for taking into account contracting flexibility and complex forms of
environmental uncertainty. In addition, option pricing provides a computationally tractable
formalism for calculating optimal values of various contracting decision parameters, that
to date have not been rigorously modeled. Such parameters include the value of a flexi-
ble/contingent contract, when to give out a contract to a contractee, when to break a con-
tract, and which contract to accept out of a set of offered contracts. In our models these
aspects of contracting can be explored analytically and experimentally. There are some
aspects of contracting that have no analogues in financial options. These include contracts
with quality guarantees, and how to handle multiple sequential sub-contracting. We extend
option pricing theory in interesting ways to model such contracts.

1.1 Related Work

In the DAI literature, contracting has been used as a metaphor for task allocation. In the
Contract Net protocol,[42], a contract is an explicit agreement between an agent that gener-
ates a task (the manager) and an agent that is willing to execute the task (the contractor). In
the contract net, the agents are not self-interested, thus no fee is specified as an inducement
to the agent to submit a bid for an advertised contract. In addition, if the manager breaks
the contract, the contractor simply abandons the task without monetary compensation. In
studies of formalizing commitments in joint multi-agent plans [32, 14], in studies of decom-
mitment in meeting scheduling [40], or in cooperative coordination [7], although the agents
do not explicitly form contracts, they are assumed to be not self-interested. In these set-
tings, there is no need for more complex mechanisms, e.g mechanisms to value non-binding
contracts or to calculate optimal timing for decommiting from contractual obligations.
Most existing game-theoretic work on automated negotiation (e.g., [33, 35, 47]) has



focused on the design of protocols and strategies for agents to arrive at mutually agreeable
deals, or socially/globally desirable states. Such research assumes that the value of each po-
tential deal in the space of possible deals is either known or easily calculated. For example
in [36] potential contracts are valued based on the marginal cost of taking on an additional
set of deliveries in a transportation delivery domain. In these works, future uncertainty is
usually not taken into account, thus considerably simplifying the valuation problem.

Most contracts in the multi-agent literature have been binding, i.e., neither party can
abort a contract once it has been entered into [20, 35, 36]. The lack of flexibility of such
contracts is a serious limitation: the profitability of a contract may increase or decrease
considerably depending on uncertain future events. Game theory has proposed contingency
contracts to take into consideration the potential afforded by probabilistically known future
events. Contingency contracts ! specify contractual obligations that are made contingent on
future events. Such contingency contracts, though potentially more beneficial than binding
contracts, suffer from a number of disadvantages, e.g. impossible to enumerate all possible
relevant future events [38, 36]. One type of flexibility is afforded by the ability to decommit
from the obligations of the contract. Sandholm and Lesser [38] present arguments for the
usefulness of such contracts. They consider allowing unilateral decommitment by either
party of a contract at any point in time. The party that aborts the contract must pay a
decommitment penalty to the other party. We believe that our valuation methods, based
on option pricing theory, will provide a rigorous and equitable way of calculating such
penalties. .

In [31] the future uncertainties are modelled as absorbing Markov chains. Using this
Markov chain an agent computes the expected payoff from a contract. This expected payoff
is used by the agents to decide between contracts. In this work, the contracts are binding and
uncertainty is modelled by a stationary process, a Markov chain. In our work, we would like
to model contingent contracts under non-stationary uncertainty processes. In [21] efficient
ways to reach contracting are considered. The focus of the paper is more on negotiation
rather than modeling and valuing contingent contracts.

The idea of applying option pricing theory to “real-world” investment and pricing deci-
sions is not new. Indeed, there is a growing interest in real option theory, [4, 5, 9, 8, 11, 26]
which applies financial options theory to the optimal timing and valuation of irreversible
investment decisions. The investor is viewed as having the “option” to invest, which he
may “exercise” at any time. However, the use of option pricing theory to value contingent
contracts is new, and gives rise to new problems that have not been addressed by previous
research in real option theory. For example, prior research does not consider decommitment
in contracts, contract quality guarantees, or sequential subcontracting.

To put our research in context, we mention that the economic perspective [24, 48]is
gaining popularity in computer science in general and in Al in particular. For example,

'We use the word contingent or flexible contracts in our document to distinguish from the contingency
contracts of game theory. In contingent contracts, the particular future contingencies do not need to be explicitly
spelled out.




in [49] the argument is made that the economic paradigm should be adopted in situations
where (a) there is a problem of allocation of limited resources, (b) rational behavior can be
assumed, and (c) authority and activity are decentralized. All three of these assumptions
are valid for communities of intelligent agents. In particular, the rationality assumption is
perhaps more valid for computerized agents than humans since presumably the former have
much more computational powers than the latter. This point has been made by Varian [47],
and by Rosenschein and Zlotkin [35].

2 Background

Negotiation of self-interested agents has been extensively studied in game theory. Game
theoretic models make the following restrictive assumptions: ? (1) Both the number of
players and their identity are assumed to be fixed and known to everyone. (2) All the
players are assumed to be fully rational, and each player knows that the others are rational
(common knowledge). Each player’s alternative set is fixed and known. (3) Each player’s
risk-taking attitude and expected-utility calculations are also fixed and known to each and
every individual involved in decision making. These assumptions limit the applicability
of game theoretic frameworks for solving realistic problems. The search for determinate
rational decisions within the framework of game theory has not led to a general model
governing rational choice in interdependent situations.

Moreover, the evaluation of an outcome in game theory is one-shot, i.e. it is the agent’s
expected (final) payoff, that is then propagated backwards to calculate the expected payoff
at each stage of the game. In addition, in game theoretic frameworks, dynamic risk attitudes
are hard to handle computationally and for simplicity, an agent is typically assumed risk
neutral. Furthermore, although game theory does not explicitly mention contract execution,
it is assumed that contracts are binding.

Decision making under uncertainty has been extensively discussed in game theoretic[12]
and decision analysis[33] literature. Most of these models assume that the decisions to be
made are now or never propositions, that is, if the decision maker does not undertake the
decision now, he will not be able to in the future. Furthermore, if the decision maker com-
mits himself to certain decisions, he is not able to change his commitment regardless of
how unfavorable the future might turn out to be. In traditional decision analysis under un-
certainty and game theory, the possible outcomes of an action depend on the uncertainty
in the environment and on other players’ possible actions. In the face of such uncertainty,
it may be beneficial for an agent, and possibly for the agent society to allow flexibility in
agent commitments.

21t should be noted that some of the very recent game theoretic models are directly motivated by consid-
erations of dropping or relaxing some of these assumptions. Although there has been interesting progress
reported in the literature (e.g., [18]), the fundamental framework and methodology of game theory remains al-
most the same and it might be too early to tell whether these new results will reshape the current game theoretic
framework.



In a single agent environment, we may view commitment to a decision as a contract of
the decision maker with himself [13, 34]. In a multi-agent environment, most of the time
decisions can be viewed as inter-agent contracts. In traditional models, decisions made by
a decision maker are binding. Binding decisions are appropriate for some types of tasks
and environments (e.g., a static world); in most realistic situations they are not. Recent
years have seen tremendous interest in models which are able to deal with more flexible
types of decisions. One of the major types of flexible decisions is decisions which could
be deferred for the future when more information could be obtained. The notion of a con-
tingent contract can be used to describe this type of flexible decisions. The basic idea is
parallel to the concept of “financial call option” — the right but not the obligation to make
an investment at some future time of the investor’s choosing. Intuitively, by introducing
contingent contracts into the decision space available to the decision maker, we naturally
enlarge the space of possible decisions from which the decision maker chooses his action.
Assuming everything else being equal, we know that the decision maker’s payoff can ben-
efit given these flexibilities. This is from the individual decision makers’ point of view. If
we consider a multi-agent scenario, we might as well improve the overall payoffs (social
welfare) by allowing individual decision makers to make more flexible contracts. This is
significant for developing computational multi-agent coordination/contracting mechanism
in a DAI multi-agent setting.

Option pricing theory is motivated to answer questions regarding how to make deci-
sions given contingent contracts. For some simple scenarios, where the uncertainty can
be captured in simple probabilistic models, the traditional decision making under uncer-
tainty techniques can be adapted to deal with contingent contracts. However, traditional
decision making theory cannot cope with more complicated situations. By contrast, option
pricing theory offers much more powerful representational and computational mechanisms
which can be used to address the more difficult and general situations, such as the ones
involving non-stationary random processes and/or multiple uncertainties which are inter-
woven. There are many technical difficulties when allowing contingent contracts that make
traditional methods obsolete. For instance, in decision analysis with contingent contracts,
we allow the decision maker to have the opportunity to exercise his option at any time
point. Mathematically, this entails the introduction of time-dependent processes into the
model. Traditional models don’t provide computationally tractable methods to address
general time-dependent (non-stationary) random processes. Another example is how to
deal with continuous information gathering/updating which can happen before the decision
maker makes any commitment. Option pricing theory whose baseline mathematical model
is based on a fairly general stochastic optimal control framework, provides satisfactory
answers for modeling and evaluating these complicated phenomena.

The model proposed in this research is intended to handle contracting flexibility among
self-interested agents in situations that the game theoretic model cannot cover, such as set-
tings with complex underlying environmental uncertainty (non-stationary stochastic pro-
cesses), where expected payoff calculations cannot fully model and take into consideration




time dependent probabilistic interactions, and where risk reduction is desirable.

3 The Many Faces of Contingent Contracts

We illustrate contingent contracts and motivate the need for formally modeling multi-agent
contingent contracting by means of a few examples.

Example 3.1 (Text Processing.) Imagine that agent A, as part of some larger task, needs to
translate NV pages of Japanese text into English. Since agent A lacks translation capabilities,
it seeks other agents that specialize in translation. Various translating agents offer contracts
to agent A. We assume the following model for each such translating agent. The agent
measures time in integral “cycles” (say 10 second intervals), numbered 1,2, 3, ..., time 1
denoting the cycle just after starting to work on the contract. At time & the agent processes
an integer number Ay > 0 pages of text for agent A. Since the agents may be interleaving
their cycles among several contractors, A; may be 0. Thus the total number of A’s pages
processed by time k by the translating agent is

Let X denote the (random) time the translating agent takes to translate all N pages of A’s

text:
X = min{k : M, = N}.

Processing one page costs ¢ dollars for any agent, so by time £, the cost of processing A’s
pages is cBj,. We assume symmetrically that ¢ is also the worth of a translated page of text
to agent A. Assume that whenever a page is translated, it is sent immediately to agent A.
Thus if agent A aborts the contract at time k, the payoff to agent A is G = c¢M,, which is
also the translator’s cost of processing A’s pages.

Now suppose translating agents B, C, D, F offer four different kinds of contracts to
agent A:

e Contract B: For each k, with probability 0.8, Ay = 1, and with probability 0.2,
Aj = 0; A is not allowed to abort, i.e., this is a binding contract.

e Contract C: For each k£, A, = 1 or A; = 0 with probability 0.5. However, unlike
contract B, this one is a contingent contract where agent A can decommit at any time.

e Contract D: Same as contract C, except that agent A can abort the job if the through-
put M}, /k of the job drops below a certain threshold 6.

e Contract E: Same as contract C, except that agent A will abort the job if it is not
finished by a certain deadline d.



Let us assume that the fees for these contracts are Cg, Cc, Cp, CE respectively. In the
absence of a rigorous valuation procedure, it is difficult to compare these contracts. For
instance let us compare contracts B and C. On the one hand, contract B has the disadvantage
of being binding, but there is a high probability (0.8) that each time cycle is devoted to
processing a page of agent A. On the other hand, agent C’s contract is more flexible but only
works on a page of agent A with probability 0.5 Which contract should agent A choose?
Let Vg, Ve, Vp, VE denote the respective values (from A’s perspective) of these contracts.
A rational policy for agent A is to pick the contract with the largest value of V, /C, where
z € {B,C, D, E}. How should one determine V3, V¢, Vp, VE? Questions such as this
are the focus of our proposal. One difficulty in valuing these contracts is that the payoff
to the contractor depends on how events play out in the future, e.g., how many time cycles
are devoted to agent A, etc. However, the future is uncertain, and agent A must make a
decision now in the absence of information about the future. In Section 4 we show one way
to compute the values of these contracts. [ |

Example 3.2 (Buying Chips) Consider the example of an electronic market place. In gen-
eral, an agent who wants to purchase a certain quantity of an item is faced with many op-
tions. The agent would want to choose the best deal. Suppose an agent wants to buy 5000
micro-processor chips in 2 months. Let us consider two choices for the agent:

o Choice A: The agent can buy 5000 chips in two months at the prevailing price.

e Choice B: A supplier can give the agent a license that will cost the agent 50 dollars
for the right to buy the chips in two months for 100 per chip.

The agent is faced with the question of which choice to make. Notice that this is not as triv-
ial as it seems because the prices of micro-processor chips might have random fluctuations.

Example 3.3 (Information Retrieval) Consider two Web sources A and B with different
performance characteristics. Suppose an agent sends a request to source A. Suppose x units
of time pass and the agent hasn’t received an answer. Further suppose that the agent can
have only one active request at a time. Should the agent abort the request on source A and
restart the request on Source B?

The above examples motivate our view that several features of contracts, and particu-
larly contingent contracts, are analogous to those of financial derivative securities, such as
options. There is a well-established and widely-used mathematical theory for pricing such
securities (see [15]). We believe that this theory is highly applicable to modeling various
aspects of inter-agent contracts. In addition, some types of contracts have no analogues in
the financial world. To value such contracts we will develop new models and extend option
pricing theory in interesting ways.




4 Overview of Options

We now give a very brief introduction to options and their valuation. For more details the
reader is referred to Hull’s [15] excellent introductory text. For simplicity we confine our-
selves to discrete time, although we intend to consider continuous time in our research. An
option on a stock is a contract that confers upon the holder the right but not the obligation
to exercise it at certain specified times. Once exercised, the option ceases to exist. When
exercised at time /, the option yields a nonegative payoff G;.. The payoff in general may
depend on the history of stock prices Sg, Sy, 52, ... ,S5; up to time k. The values .S; are
random, so the payoff (7}, is also random. An option is bought from the seller of the option
for a certain price. An American option can be exercised at any time £ before the option
expiration date 1. European options can only be exercised at the expiration date n. Intu-
itively, since an American option has more flexibility, it is more valuable than an otherwise
equivalent European option. As we show later, contingent contracts where an agent can
decommit at any time can be viewed as American options.

The value, or “fair” price, of an option is defined as the price that prevents arbitrage
opportunities, which are opportunities for unlimited riskless profit. This is the basis for the
Arbitrage Pricing Theory (APT) [10, 15] of option valuation. In this pricing theory, it is
assumed that one can lend/borrow money at a risk-less rate of r, so that one dollar at time
k is worth R = 1+ r dollars at time k + 1. Thus one dollar at time k is worth 1/R* dollars
at time 0.

Assume that we have a stochastic process P = {F;}$2,. P is the random variable
which gives the value of the process at time k. Intuitively, a measure is the distribution of
the process. The reader is referred to [2] for a formal definition. A measure lets us reason
about the process. For example, using the measure we can compute the probability that the
stochastic process will ever go above a certain pre-specified bound k. A filtration { F3}72,
lets us talk about information known at a certain time £. Informally, 7} is the information
known upto time k. Formally, 7} is a o-algebra (see [2]). A process P is a martingale if
and only if the value of the process at time £ + 1 conditioned back to time k is the value of
the process at time %. Formally,

E(Pey1 | Fr) = P

Next, we give an example of a martingale. Consider an infinite sequence of independent

random variables X3, Xo,---. Assume that X; = 1 with probability p; and X; = —1
with probability 1 — p;. Also, letY; = X; — (2p; — 1). Let P, = Zle Y;. Let Fj, be
the information known by watching the variables X7, - - - , X. In this case {F;}72, isa



martingale. This is shown in the equations given below:

k+1
E(Pk-{—l’le"'vXk) = E(Z}/Z|X177Xk)
=1

k
= E(Yiq)+ Z Y
=1

= P
Notice that if p; # p; (for ¢ # j), then {P;}?2, is not a stationary process. Hence, a
martingale need not be a stationary process. Intuitively, a martingale represents a process
with no drift.

Under APT, the value V{, of a European option at time 0 is given by

Vo = E(G,)/R", 1

where the expectation E is taken with respect to the the martingale measure P for the stock
price process Si. In words, the value of a European option at time 0 is the expectation of
the present value of the terminal payoff G.,.

The valuation of an American option is complicated by the fact that it can be exer-
cised at any time before expiration. The holder of the option may follow an arbitrary
exercise strategy specified by a stopping time 7. A stopping time can be thought of as a
non-clairvoyant decision rule that says when to exercise; for any evolution of the world w,
(i-e. sequence of stock prices from Sy to Sy) 7(w) is the exercise time for that evolution.
For a random process X, X3, ..., X, the symbol X, denotes a new random variable
whose value on a path w equals X (W) (w). Under APT, value V; of an American option is
the maximum, over all possible exercise strategies 7, of the expectation of the discounted
payoff G./R":

Vo= max E(G-/R). 2
More generally, the value of the option at time £ is
Vi = R* max E(G,/R").
k<7<n
Notice that since 7 = £ is a valid stopping time, V;, > G holds for all k. However,
since we have the option of waiting to exercise our option, V; may in fact be greater than

the immediate payoff G;. It can also be shown [10] that a stopping time 7* that achieves
the max in the expression (2) for V} is:

" = min{k > 0; Gy = V;}. 3)

Thus a holder of an American option wishing to maximize the expectation (with respect
to the martingale measure) of the time-discounted payoff from his option would use the
following rule to exercise his option: exercise the option as soon as the value V}, equals the
immediate payoff G.




4.1 Contracts as options

Now let us consider Contract B, the binding contract in Example 3.1. What is the value Vg
of this contract, from A’s point of view? If the time taken by agent B to process all /V pages
of A’s text is X, the payoff to agent A is ¢cN. Let’s denote by E(X) the expectation of the
completion time X . Thus in analogy with European options, the value of the contract (at
time 0) can be defined as

Vo = E(cN/RX) = cNE(1/RX),

where R is an appropriate discounting factor.

The similarities between options and contracts are particularly evident in the case of
contingent contracts. Returning to Example 3.1, consider the contingent contract offered
by agent C, where agent A has the right to abort at any time of its choosing. In other words,
agent A has the option to abort the contract, and it may exercise this option at any time.
Thus contract C is analogous to an American option and its value can be computed by
equation 2.

The decommitment flexibility of A is modeled by a stopping time 7. For example, for
contract E (the one with the deadline d), if X denotes the random time agent E will take
to finish the job, the stopping time 7 is min(d, X). If agent A aborts the contract at time
k, the payoff is G, = cM}. Thus in analogy with the pricing of an American option, the
value of contract E can be defined as:

Vo = E(G;/R").
We now show how to compute the value of contract E in a very simple scenario.

Example 4.1 Consider the text processing Example 3.1, and suppose agent A wants N = 2
pages of text translated. Consider contract E in that example, which has the following
features: (a) with probability 0.5, A = 1 (i.e. one page of A’s text will be translated in
cycle k), and with probability 0.5, A; = 0, (b) agent A can abort the contract if the job is
not finished by 3 cycles, (c) processing each page of text costs agent E ¢ = 1 dollar, and so
G, = My, where it will be recalled that M, is the number of pages of A processed by time
k.

How much is this contract worth to agent A? The possible evolution of events is de-
picted in figure 1. The right/left branches represent times when a cycle is/isn’t alloted to
A. The square nodes represent completion of the job. Note that we did not expand the tree
beyond three levels because A aborts the job after 3 cycles. The value of this contract is
computed using backward recursion on the tree. The value at the leaves is shown in the fig-
ure. The values at nodes (3,1) and (3,2) are 0 and 1 respectively. Assume that the interest
rate is r = i—. Now we compute the value at node (2,1). This value is the expected value of
the value at (3,1) and (3,2) (the two children of (2,1)) discounted by R = 1 + r. Recall that
T dollars at time 3 is worth 1% dollars at time 2. This gives the value of % at node (2,1).

10



Continuing this way, we get the value % at the root node (0,1). This is the fair price of
this contract. [

Figure 1: Value Tree

We now show how an agent can view the situations of buying chips in the future (ex-
ample 3.2) in an options theoretic framework.

Let P represent the random price of chips in 2 months.
Case A: In this case the agent pays 5000 x P.
Case B: In this case the agent pays 5000 x 100.
Hence the savings from using Case B is 5000 x (100 — P). Now consider an option which
pays 5000 x (100 — P) in two months. If the value of this option is more that 50, the agent
should pay the license fee of 50 dollars and choose Case B. In general, the situation is more
complicated. The agent could buy z chips in 2 months at the current price and 5000 — z
chips at 100. In this case the payoff of the option is 5000 x 100 — z(100 + P). Hence the
agent should buy the license if there exists a z < 5000, such that the value of the option
paying off 5000 x 100 — z(100 + P) in two months is < 50.

Now consider the example with two WWW sources A and B. Suppose the agent issues
a query to WWW source A. Lets say ¢ units of time has elapsed. Suppose at this time
the agent aborts the query on A and restarts it on B. The gain from aborting the query is
Gy — L.

e The agent loses some resources because it has to restart the query on source B. The
agent also loses (opportunity cost) because in certain situations once the query is
restarted on source B the answer from source A could have arrived before the answer
from source B. These two factors contribute to the loss factor L;.

e By restarting the query on source B there is some gain because the answer might
arrive earlier than it would have if the agent had waited for source A to answer. This
contributes to the gain G;.

11




Now the question is what is the optimal time for the agent to abort the query on the WWW
source A. Consider an option which pays off G; — L; at time ¢. The optimal exercise rule
for this option exactly corresponds to the optimal aborting rule for the agent (equation 3).

5 Quality in a Contingent Contract

As mentioned in Section 3 there are some aspects of contingent contracts that have no
parallels in financial options. The quality-guarantee is one of them. In this section we offer
some preliminary ideas for valuing such contracts.

Suppose an agent A wants to give a contingent contract to B to finish a job J with the
following conditions:

e Agent A will abort the job if it is not finished by a deadline d, i.e., 7 = min{ X, d},

e Agent B provides the quality guarantee that the probability that the random comple-
tion time X exceeds d is at most ¢, i.e., P(X > d) < e.

In order to satisfy the quality guarantee, B will need to devote a sufficient fraction of its
time cycles to agent A’s job. This corresponds to choosing a measure P that satisfies P(X >
d) < ¢, and there might be many such measures. Let the set of such measures be P. In
order to offer A the most attractive price, B should compute the contract value using the
tightest schedule, i.e., B does just enough to fulfil the quality aspect of the contract but no
more. This corresponds to valuing the contract using the measure from P that gives the
smallest value. In other words, the value of the contract is

G
VJ = minE [——1] .
O " per PR

where Ep denotes the expected value under the measure P.

6 The Case of Sequential Sub-contracting

We now consider another type of contract that has no obvious parallels in the options world:
sequential sub-contracting. We illustrate one approach to valuing such contracts by means
of the text processing scenario of Example 3.1.

Suppose agent A gives an N-page contract to agent B, characterized by measure P and
cost-per-page c, M}, (the number of pages of A processed by time k). Agent A wants to
abort the job if it is unfinished by time d, so that its stopping time is 7 = min{X, d}.
At each time £, B considers whether or not to subcontract out all the remaining pages to
agent C, characterized by measure P, cost-per-page ¢/, and process M. Agent B decides
to subcontract all remaining pages to C if

e C’s expected page output is at least as much as that of B, i.e.,

E'(M]/R7|Fy) > E(M,/R7|Fy), 4)
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e and C’s expected cost of processing the remaining pages is smaller than that of B:

E'[¢'(M] — My)/R"|Fi] < Ele(M, — M}.)/R"|Fy]. %)

Thus, B subcontracts out to agent C only if it gets at least as much processing rate at
a smaller cost. The effect of subcontracting at time £ is thus to change the probability
measure on the random process A, (the number of pages processed in time k), and also to
change the cost (or worth) per page processed. Let us define a new stopping time 7/ which
we call the “switching time”: 7' = min{k : (4), (5) hold}. We then define the new measure
P as follows. For any integer i > 0 P(A; = 1) equals P(Ak =1)ifk < 7/, and equals
P'(Aj, = 1) otherwise. The payoff function is G}, = cZZ_ A+ ,:T, A;. Then the
value of the contract can be defined as

Vy =E(G,/R"). (6)

In general, one has a directed acyclic graph called the sub-contracting graph whose
nodes represents agents, and a directed arc from node u to node v is drawn when agent
u can subcontract a job to agent v. There is a designated root node representing the first
contractor agent. The value of the contract at each node of the sub-contracting graph can be
expressed as in (6), and this allows the value of the contract at the root node to be computed
recursively.

7 Example Application Domains

7.1 Supply Contracting

A rapidly growing application area for agent technologies is supply contracting, which is
an emerging area in Operations Management/Management Science[1, 3, 23]. Supply con-
tracting investigates the research question of how manufacturers can make sensible deals
with suppliers. Since financial information, commodity prices, inventory information, etc.,
are easily available on-line and in real-time, agents can be used to monitor this information
and respond quickly to changing conditions, such as changes in demand [19]. In addition,
agents could be used in negotiating supply contracts. Early research in Management Sci-
ence and Operations Management has assumed that there is no risk or uncertainty involved
in acquiring an adequate amount of raw material and parts supply in a timely manner. This
assumption was reasonable since in those times the dominant philosophy and practice was
that in order for a manufacturing company to operate efficiently, it should also produce its
own parts. This lead to vertically integrated organizations. Since the mid 80’s, however,
it has been advocated that companies should outsource the supply of parts for their prod-
ucts to better address global competition issues. Much of the recently growing research in
supply contracting is devoted to exploring the significant question of how to negotiate an
optimal supply contract considering many OM-related issues such as price, parts delivery
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time, contract length, long-term commitment, etc. Recently, sophisticated forms of sup-
ply contracts, such as ones which involve contingent claims, optional decommit, etc., have
gained popularity in industries (e.g., fashion industry). The major technical challenges in
these lines of research include: (1) how to evaluate a supply contract given incomplete in-
formation, (2) how to come up with compromises which offer reasonable risk-sharing and
profit-sharing properties and therefore are potentially acceptable to both parties.

8 Advantages of the option pricing approach

In this section we summarize the advantages of the option pricing approach over traditional
techniques employed in DAL

e The traditional scenario in DAI is now or never, or in other words, with few excep-
tions most work concentrates on binding contracts. In contrast,frameworks based on
option pricing allow modeling contingent contracts in a very natural way. In addi-
tion, option pricing provides a unified framework for computing values for binding
and flexible contracts.

e Option pricing provides a computational framework for optimally calculating deci-
sions, such as, whether it is more advantageous to decommit, when to decommit,
what contract to accept out of an offered set of contracts,

e Most techniques based on traditional game theory do not provide tractable compu-
tational tools to deal with the risk of a decision. These techniques are based on
maximizing the expected payoff of a decision. In option pricing, risk can be thought
of as variability of a decision. Under certain assumptions, option pricing techniques
provide mechanisms for reducing decision risk. This can be useful in searching for
optimal decisions with low risk or low variability.

e In traditional decision analysis the uncertainty is modelled as a stationary process,
i.e., the variation between time ¢ and ¢ — j only depends on the difference of times
(j) and not on ¢. Notice that in general, this assumption is not true. For example, in
our text processing example the random process governing the number of pages an
agent processes could depend on the number of pages processed so far by the agent,
i.e., the past history. In contrast, the option pricing literature can handle generalized
time-dependent stochastic processes.

The options pricing framework provides a more general framework to evaluate and compute
optimal decisions in the face of uncertainty. However, applying that framework to DAI
problems is not a straight forward task because of assumptions inherent in these techniques.
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9 Conclusion

We expect our approach to flexibel multi-agent contracting to have an impact on the state
of knowledge in three different areas: (1) Intelligent agents. Our approach provides, for
the first time, a rigorous way for agents to evaluate their contingent contracts and decide
between contracts. Many automated negotiation models and protocols assume that the
value of contracts is known. Our valuation methods can be integrated into these models
to provide a computational mechanism to enable them to compute contract values. (2)
General contracts. Our model is applicable to “real-world” contracts, in addition to task
allocation type contracts. Moreover, we expect our method to impact areas of practical
significance, such as electronic commerce and supply contracting management. (3) Option
pricing theory. In order to handle contracts that have no analogues in the financial world,
we start extending option pricing theory in several interesting ways.
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